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 Introduction

The fundamental concept of digital communication is to move digital information

from one point to another over an analog channel. More specifically, passband dig-

ital communication involves modulating the amplitude, phase or frequency of an

analog carrier signal with a baseband information-bearing signal. By definition, fre-

quency is the time derivative of phase; therefore, we may generalize phase modula-

tion to include frequency modulation.

Ordinarily, the carrier frequency is much greater than the symbol rate of the

modulation, though this is not always so. In many digital communications systems,

the analog carrier is at a radio frequency (RF), hundreds or thousands of MHz, with

information symbol rates of many megabaud. In other systems, the carrier may be

at an audio frequency, with symbol rates of a few hundred to a few thousand baud.

Although this paper primarily relies on examples from the latter case, the concepts

are applicable to the former case as well.

Given a sinusoidal carrier with frequency: fc , we may express a digitally-modulated

passband signal, S(t ), as:

S(t )= A(t )cos(2π fc t +θ(t )), ()

where A(t ) is a time-varying amplitude modulation and θ(t ) is a time-varying phase

modulation. For digital phase modulation, we only modulate the phase of the car-

rier, θ(t ), leaving the amplitude, A(t ), constant.

 BPSK

We will begin our discussion of digital phase modulation with a review of the fun-

damentals of binary phase shift keying (BPSK), the simplest form of digital phase

modulation. For BPSK, each symbol consists of a single bit. Accordingly, we must

choose two distinct values of θ(t ), one to represent 0, and one to represent 1. Since





there are 2π radians per cycle of carrier, and since our symbols can only take on two

distinct values, we can choose θ(t ) as follows. Let θ1(t ), the value of θ(t ) that repre-

sents a one, be 0, and let θ0(t ), the value of θ(t ) that represents a zero, be π. Doing

so, we obtain:

S0(t ) =
√

Es cos(2π fc t +π), ()

S1(t ) =
√

Es cos(2π fc t +0),

where
p

Es is the peak amplitude of the modulated sinusoidal carrier, S0(t ) is the

BPSK signal that represents a zero, and S1(t ) is the BPSK signal that represents a

one.

. Phase Modulation Equals Amplitude Modulation

The expressions for S(t ) given in () clearly show BPSK as a form of phase modula-

tion. However, since: cos(θ+π) =−cos(θ), we can rewrite S0(t ) and S1(t ) as:

S0(t ) = −
√

Es cos(2π fc t ),

S1(t ) =
√

Es cos(2π fc t ).

These expressions for S(t ) show BPSK as a form of amplitude modulation, where

A0(t ) = −1 and A1(t ) = +1. This begs the question: Is BPSK phase modulation or

amplitude modulation? Both possibilities are correct, since the two are equivalent,

as demonstrated by the trigonometric identity we used to convert between the two

forms.

The modulation process is probably easier to understand when viewed from the

perspective of amplitude modulation. For the example above, the carrier signal isp
Es cos(2π fc t ), and the amplitude modulation is a square wave that has an ampli-

tude of ±1 and a period of T , the duration of one symbol. Fig.  illustrates how we

create BPSK by multiplying a sinusoidal carrier by rectangular bit pulses.

. An Alternate Choice of θ(t )

In the previous example, we chose θ0(t ) = π and θ1(t ) = 0. We could also chose

θ0(t )=+π

2
and θ1(t )=−π

2
. This results in:

S0(t ) =
√

Es cos(2π fc t +
π

2
), ()

S1(t ) =
√

Es cos(2π fc t −
π

2
).

Using the identities sin(θ) = cos(π
2
−θ), cos(−θ) = cos(θ), and sin(−θ) = −sin(θ), we

can re-write () as:

S0(t ) = −
√

Es sin(2π fc t ),

S1(t ) =
√

Es sin(2π fc t ).


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Figure : BPSK Modulation
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Figure : BPSK Modulation
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The result is once again a sinusoidal carrier multiplied by rectangular bit pulses,

though the carrier is now sine instead of cosine, as shown in Fig. . Although this

BPSK signal looks quite different from the one shown in Fig. , both represent the

same bit pattern. The only difference is a carrier phase offset, caused by our choices

of θ(t ).

. Carrier and Symbol Timing

In the examples thus far, the duration of each symbol, T , is exactly one carrier cycle;

or, to put it another way, there are two carrier half cycles per symbol. Furthermore,

the symbol transitions occur when the unmodulated carrier phase is zero. Neither

of these criteria is strictly necessary. For example, we may choose a symbol rate that

is incommensurate with the carrier frequency, in which case, the symbol transitions

will occur at many different carrier phases, and the symbol duration may be some

irrational ratio of carrier cycles. This is illustrated in Fig. .
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Figure : BPSK Modulation

. Frequency Spectrum

To understand the frequency spectrum of BPSK, we make use of the following prop-

erty of the Fourier transform: multiplying two signals in the time domain is equiv-

alent to convolving these two signals in the frequency domain. Therefore, the fre-

quency spectrum of BPSK must be the convolution of the carrier spectrum and the

symbol spectrum.
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Because the carrier is a pure sinusoid, the carrier spectrum is an impulse located

at the carrier frequency. Convolution of any spectrum with a frequency impulse

centers this spectrum about the frequency of the impulse. Therefore, the BPSK spec-

trum is the spectrum of the baseband symbols, centered about the carrier frequency.

The spectrum of the baseband symbols is rather complicated. The symbols are

rectangular pulses, and would be a perfect square wave if the data sequence was an

infinitely long string of alternating zeros and ones. The spectrum of a square wave

is an infinite series of weighted impulses at all odd harmonics of the fundamental

frequency. However, the symbol waveform is not a square wave, due to the random

nature of the data sequence. Instead, this waveform contains rectangular pulses

having widths that are integer multiples of one symbol, T . This creates a spectrum

that contains not only the fundamental symbol frequency and its odd harmonics,

but also all integer sub-harmonics of the fundamental, along with their odd har-

monics.

Fig.  shows the spectrum of baseband symbols, as well as the spectrum of BPSK

created from these symbols. For the example shown here, the carrier frequency is

 Hz, the symbol frequency is  Hz and the sampling frequency is  KHz.
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Figure : BPSK Frequency Spectrum

. Bandwidth

In all the examples thus far, the information-bearing modulation (i.e. the rectan-

gular bit pulses) has not been filtered. Although the power in the spectral sidelobes

falls off as the frequency increases, these sidelobes continue on to infinite frequency.





Hence, unfiltered BPSK has theoretically infinite bandwidth. In order to limit the

bandwidth, the baseband information signal must be filtered. This is also called

‘pulse shaping’, since we are filtering the data to give it a shape that has more desir-

able spectral properties than a rectangular pulse.

We expect a rectangular pulse to have a very broad frequency spectrum, due to

the sharp transitions at the pulse edges. If we smooth the baseband pulse edges, we

should be able to reduce the bandwidth of the pulse. When selecting a pulse shape,

we must be careful to prevent inter-symbol interference (ISI). We can prevent ISI by

choosing a pulse shape that has zero amplitude at integer multiples of the symbol

rate. Such a pulse is called a ‘Nyquist’ pulse. Unfortunately, a true Nyquist pulse is of

infinite time duration, so we must use a truncated Nyquist pulse. The most popular

truncated Nyquist pulse is the raised-cosine pulse.

. Pulse Shaping

In our previous examples, we represented the baseband symbols with rectangular

pulses that had amplitudes of ±1 and widths of T . We may also think of the base-

band symbols as weighted impulses to which we apply a pulse shape. The top graph

of Fig.  shows a baseband information sequence consisting of weighted impulses.

The middle graph of Fig.  shows this same signal after applying a rectangular pulse

shape to the impulses. The bottom graph of Fig.  shows the signal if we filter the

impulses with a raised-cosine pulse shaping filter.
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Figure : Baseband Pulse Shaping

The difference between the rectangular and raised-cosine pulse shapes is very
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easy to see in these time domain signals. Less evident, but more important, are the

differences between the frequency spectrum of these signals. The smoother transi-

tions of the raised-cosine pulse result in a signal that uses less bandwidth than those

of the rectangular pulse. To illustrate this, Fig.  provides a comparison between the

spectrum of the rectangular pulses and the raised-cosine filtered pulses. The dotted
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Figure : Shaped Spectrums

trace near the top of Fig.  is the spectrum of the rectangular pulses, while the solid

trace near the bottom of Fig.  is the spectrum of the raised-cosine shaped pulses.

The raised-cosine filter has not only narrowed the main spectral lobe, it has also

nearly eliminated the sidelobes.

In most digital communications systems, we split the task of pulse shaping equally

between the transmitter and the receiver. In order to do this, we must use the square-

root of the raised-cosine filter response at both the transmitter and the receiver. This

way, the product of the two filter responses will result in an overall raised-cosine re-

sponse having zero ISI. Note that a signal which has only been filtered by one of the

square-root raised-cosine filters (e.g. the signal on the channel) does not exhibit

zero ISI.

. The Eye Diagram

One consequence of pulse shaping is the need for accurate symbol timing recovery

at the receiver. With rectangular pulse shaping, the symbol transitions are vertical

lines. With raised-cosine pulse shaping, the symbol boundaries are hard to identify,

since they are smooth and gradual. An eye diagram provides an easy way to observe

the transitions between symbols and inspect the symbol timing.
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An eye diagram is simply the baseband signal repeatedly plotted over an interval

of one symbol. The maximal opening of the eye indicates the center of the symbol,

which is also the optimal time for the receiver to take a sample. The transitions

between symbols cause the eye to close at the edges.

Fig.  shows a typical eye diagram for BPSK with raised-cosine pulse shaping. At
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Figure : BPSK Eye Diagram

the center of the symbol, the eye converges to two points: ±1, while at the symbol

edges, the eye takes on many different values. The exact shape of the eye is deter-

mined by the filter roll-off factor as well as the number of samples per symbol.

 QPSK

Digital phase modulation need not be limited to the simple binary case. By grouping

bits together and choosing the phase modulation accordingly, we obtain M-ary PSK.

BPSK is the result when M = 2. For M = 4, we group the bits into pairs, called ‘dibits’,

and the resulting signal is known as quadrature phase shift keying (QPSK).

. Symbol Mapping

In QPSK, we have four symbols, each representing a particular dibit value. There-

fore, we must select four values for θ(t ), the time-varying phase modulation of our

digital passband signal. Suppose we use the map listed in Table  to assign phase

modulation to each of the four possible symbols. The mapping shown in Table 





dibit θ(t )

 + 3π
4

 − 3π
4

 +π

4
 −π

4

Table : QPSK Symbol Map

results in the following expressions for the QPSK signal, S(t ):

S00(t ) =
√

Es cos(2π fc t +
3π

4
), ()

S01(t ) =
√

Es cos(2π fc t −
3π

4
),

S10(t ) =
√

Es cos(2π fc t +
π

4
),

S11(t ) =
√

Es cos(2π fc t −
π

4
).

Using the identity: cos(a + b) = cos(a)cos(b)− sin(a)sin(b), we can rewrite () in a

more intuitive form as:

S00(t ) = −
p

2Es

2
cos(2π fc t )−

p
2Es

2
sin(2π fc t ),

S01(t ) = −
p

2Es

2
cos(2π fc t )+

p
2Es

2
sin(2π fc t ),

S10(t ) = +
p

2Es

2
cos(2π fc t )−

p
2Es

2
sin(2π fc t ),

S11(t ) = +
p

2Es

2
cos(2π fc t )+

p
2Es

2
sin(2π fc t ).

In this form, we have expressed QPSK in terms of an amplitude modulated quadra-

ture carrier. A quadrature carrier may be thought of as either a complex exponential,

e+ jωc t , or the equivalent sum of sinusoids in phase quadrature, cos(ωc t )+ j sin(ωc t ).

. Modulating a Quadrature Carrier

Expressing S(t ) as an amplitude modulated quadrature carrier allows us to concep-

tualize QPSK as the sum of two BPSK signals, which are in phase quadrature with

each other. The carrier signals are
p

2Es

2 cos(2π fc t ) and
p

2Es

2 sin(2π fc t ), and the sig-

nals that amplitude modulate these carriers are square waves that have amplitudes

of ±1 and periods of one symbol, T .

Fig.  illustrates how we create QPSK by summing two sinusoidal carriers that

have been amplitude modulated with rectangular bit pulses. In Fig. , the top three

graphs show the in-phase (real) channel, and the next three graphs show the quadra-

ture (imaginary) channel. The bottom graph shows the QPSK signal resulting from

the sum of the in-phase and quadrature BPSK signals.





−1

0

1

in−phase carrier

−1

0

1

in−phase modulation

−1

0

1

in−phase BPSK

−1

0

1

quadrature carrier

−1

0

1

quadrature modulation

−1

0

1

quadrature BPSK

−1

0

1

QPSK

Figure : QPSK Modulation

. Constellation Diagram

A constellation diagram shows the symbol locations in complex signal space. The

horizontal axis is the real or in-phase component, which is also the amplitude of the

cosine portion of the quadrature carrier. The vertical axis is the imaginary or quadra-

ture component, which is also the amplitude of the sine portion of the quadrature

carrier. The instantaneous energy, or amplitude, of a symbol is its distance from the

origin. The phase angle of a symbol is its angular displacement from the positive

horizontal axis.

The QPSK signal constellation resulting from the symbol map of Table  is shown

in Fig. . The four symbols are represented by black circles, and are labelled accord-

ing to the mapping of Table . The dashed circle represents a locus of constant signal

energy, meaning any point on this circle requires the same amount of transmitter

power. For the mapping we have chosen, the magnitude of the real and imaginary

components of each symbol are identical, and are equal to ±
p

2Es

2
.

. Symbol Mapping Rationale

We map the four symbols to the signal constellation by choosing the values of θ(t )

for each. Although there are many possible choices, the mapping listed in Table  is

preferred for several reasons, as we shall now see.

A QPSK receiver must divide the signal constellation into decision regions, then

use these regions to identify the value of the received signal. For the constellation

shown in Fig. , the decision region boundaries are the real and imaginary axes.
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This makes the decision process very simple, since the receiver only needs to de-

cide whether the signal magnitude is greater than zero or less than zero for both the

in-phase and quadrature components. We could have chosen a symbol mapping

that would rotate the constellation of Fig.  by π

4
radians, placing the symbols di-

rectly on the axes. However, in that case, the decision region boundaries would be

half-way between the two axes, adding complexity to the receiver.

Noise may cause the received signal to move out of the correct decision region.

When this happens, the receiver will make an error in its symbol decision. Each

symbol represents two bits; therefore, a symbol error may result in either one or two

bits being in error. In order to minimize the bit error probability, we use a technique

known as Grey mapping. Grey mapping requires symbols that are adjacent to each

other in the signal constellation to differ by only one bit, as opposed to two bits.

For each symbol in the constellation, the nearest neighbors will differ by only one

bit, while the symbol furthest away will differ by two bits. This minimizes the bit

error probability, since the probability of noise with a large amplitude is less than

the probability of noise with a small amplitude.

. Spectral Containment

QPSK carries twice as many bits as BPSK because QPSK uses two carriers that are in

phase quadrature with each other. For a given carrier frequency and symbol rate, a

QPSK signal will have the same frequency spectrum as a BPSK signal. In the exam-

ple above, the symbols were represented with rectangular pulses, resulting in a very

wide bandwidth. As was the case with BPSK, we must filter the baseband symbols

prior to modulating them onto the carrier, in order to control the signal bandwidth.

Once again, we use raised-cosine filtering for pulse shaping, but this time, we have

two baseband signals we must filter: the in-phase channel and the quadrature chan-

nel.

A raised-cosine filter allows us to choose the amount of ‘excess’ bandwidth as

one of our design parameters. The excess bandwidth, also known as the ‘roll-off’

factor, controls the smoothness of the pulse shape and determines the signal band-

width. As a rule of thumb, the bandwidth, B, of a PSK signal is:

B = fs ym · (1+α),

where fs ym is the symbol rate, and α is the filter roll-off factor.

To make the bandwidth as small as possible, we should make the filter roll-off

factor as small as possible; however, doing so yields a signal that is difficult to re-

cover symbol timing from. All symbol timing recovery schemes rely on abrupt tran-

sitions in the baseband signal in order to achieve timing synchronization. As we

increase the amount of lowpass filtering we apply to the baseband signal, the sym-

bol transitions become so smooth that they are impossible to identify. Reasonable

filter roll-off factors are from . to ..





. Transition Diagram

The transition diagram is similar to the constellation diagram, in that they both show

the QPSK signal in complex signal space. However, the transition diagram shows

the signal transitions between symbols, whereas the constellation diagram does not.

Fig.  shows a QPSK transition diagram. At the center of each symbol, the signal will
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Figure : QPSK Transition Diagram

be located at one of the four corners of the constellation. At all other times, the signal

will be transitioning between symbols. The exact shape of the transition diagram is

determined by the filter roll-off factor as well as the number of samples per symbol.

. Signal Envelope

We generally regard PSK as a form of constant-envelope modulation, since we are

modulating the phase instead of the amplitude of the carrier signal. However, since:

√

Es cos(ωc t +θ(t )) =
√

Es cos(ωc t )cos(θ(t ))−
√

Es sin(ωc t )sin(θ(t )),

phase modulation of a sinusoidal carrier is equivalent to amplitude modulation of

a quadrature carrier. This leads us to wonder whether or not PSK is truly constant-

envelope modulation. The answer can be found in the transition diagram.
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The transition diagram shows the signal in complex signal space, plotted over

some period of time. At any instant, the signal amplitude is simply the distance from

the origin to a specific point on the transition diagram. In order to have a constant

envelope, the signal must always be equally distant from the origin.

For unfiltered QPSK, the symbols are simply rectangular pulses, and the transi-

tions between symbols are instantaneous. In this case, the transition diagram is a

square. Although it has straight lines between all four symbols, these transitions oc-

cur in zero time; therefore, the signal must be at one of the four corners of the square

at all times, resulting in a constant envelope signal.

However, when we apply a pulse shaping filter to the symbols, the envelope is

no longer constant. This is clearly evident in the transition diagram shown in Fig. .

Since the symbols have been filtered, the transitions are no longer instantaneous,

and the signal can take on any value shown in the transition diagram.

Fig.  shows a typical QPSK signal (thin lines) and its envelope (thick lines).

Clearly, the envelope is not constant, since it becomes zero for brief instants when-
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Figure : QPSK Signal and Envelope

ever there is a π radian phase transition, which occurs when the next symbol is di-

agonally opposite of the present symbol.

The signal envelope is important on channels which suffer from amplitude dis-

tortion, especially channels which are hard limited. If a signal does not have a nearly-

constant envelope, it will be severely distorted on such a channel. This can result in

bandwidth expansion, intersymbol interference, and quadrature channel crosstalk.

If the distortion is severe, it may not be possible for the receiver to recover the mod-

ulation.
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. Transmitter

Fig.  shows a block diagram of a typical QPSK transmitter. The nibbler partitions

Nibbler

Pulse
Shaping

Filter

Carrier
Oscillator

- /ð 2
Phase
Shifter

Pulse
Shaping

Filter

bitstream
input

QPSK
output

Figure : QPSK Transmitter

the continuous input bitstream into dibits, and routes one bit to the in-phase branch

of the modulator, and the other bit to the quadrature branch of the modulator. The

nibbler also converts each zero to a signal amplitude of -, and each one to a signal

amplitude of +.

The pulse shaping filter is a square-root raised-cosine filter that limits the band-

width of the QPSK signal. When combined with another square-root raised-cosine

filter at the receiver, the overall response provides a signal with zero ISI.

The carrier oscillator generates cos(2π fc t ), which is phase shifted to sin(2π fc t )

by the −π

2
phase shifter, providing a quadrature carrier to the mixers.

The mixers modulate the in-phase and quadrature carriers with the filtered base-

band signals. The output of both mixers is a BPSK signal. The summer adds the

outputs of the two mixers together to produce QPSK.

. Receiver

All digital receivers must, in general, perform three tasks: estimate the carrier phase

(and frequency), recover the symbol timing and estimate the most likely value of the

received symbol. In order to understand the importance of these tasks, we return to

the expression for a phase modulated signal:

S(t )=
√

Es cos(2π fc t +θ(t )), ()
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where
p

Es is the (constant) amplitude of the modulated carrier, fc is the carrier

frequency, θ(t ) is the time varying phase modulation, with the initial phase of the

carrier assumed to be zero for convenience.

In the case of QPSK, θ(t ) ∈ {±π

4
,± 3π

4
}, and changes (at most) once per symbol.

This is still true when we introduce pulse shaping filters to control signal bandwidth,

though the filters do cause the trajectories between constellation points to differ

from those of the unfiltered case. Using a QPSK signal as an example, we will now

investigate each of the three major tasks the receiver must perform.

.. Synchronous Down Conversion

The first task of the receiver is to down-convert, or heterodyne, the passband modu-

lation from the carrier frequency to baseband (DC). In order to do this, the receiver

must know the correct frequency and phase of the carrier. If the frequency and

phase of the local oscillator (LO) in the receiver are precisely matched to those of the

transmitter, the baseband modulation can be recovered. To illustrate this, suppose

the transmitted QPSK signal is S(t ), given in (),and the complex LO of the receiver

is X (t ):

X (t ) =
√

Es e− j 2π fc t =
√

Es cos(2π fc t )− j
√

Es sin(2π fc t ).

When we mix the received QPSK signal with the receiver LO, we get a complex base-

band signal, R(t ):

R(t )=
√

Es cos(2π fc t +θ(t )) ·
√

Es e− j 2π fc t ,

which simplifies to in-phase (real), RI (t ), and quadrature (imaginary), RQ(t ), com-

ponents:

RI (t ) =
Es

2
{cos(2π2 fc t +θ(t ))+cos(θ(t ))},

RQ(t ) =
Es

2
{−sin(2π2 fc t +θ(t ))− sin(−θ(t ))}.

Lowpass filtering removes the double frequency terms, leaving:

RI (t ) =
Es

2
cos(θ(t )),

RQ(t ) =
Es

2
sin(θ(t )).

RI (t ) and RQ(t ) are the projections of θ(t ), our phase modulation, onto the real and

imaginary axes, respectively. We can recover θ(t ) by noting: sin(x)/cos(x) = tan(x),

and: arctan(tan(x)) = x. This leads to:

θ(t ) = arctan(RQ(t )/RI (t )),

which is the information-bearing phase modulation placed onto the carrier at the

transmitter. For BPSK, we could uniquely identify the transmitted symbol with only

one projection, but for QPSK, we need both projections in order to identify the trans-

mitted symbol.
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.. Why Asynchronous Down Conversion Fails

The expressions for RI (t ) and RQ(t ) are only valid for a coherent LO; one where the

frequency and phase are precisely matched to the transmitted signal. If these con-

ditions are not satisfied, then it will not be possible to accurately recover the phase

modulation. To see why this is so, suppose the transmitted signal is given as (), but

the receiver local oscillator is now:

X (t ) =
√

Es e− j (2π fc t+δ),

where δ is a fixed phase offset between the LO and the transmitted carrier. When we

mix the received QPSK signal with the LO, we obtain:

R(t ) =
√

Es cos(2π fc t +θ(t )) ·
√

Es e− j (2π fc t+δ),

which simplifies to:

RI (t ) =
Es

2
{cos(2π2 fc t +θ(t )+δ)+cos(θ(t )−δ)},

RQ(t ) =
Es

2
{−sin(2π2 fc t +θ(t )+δ)− sin(δ−θ(t ))}.

After lowpass filtering and further simplification, we end up with:

RI (t ) =
Es

2
cos(θ(t )−δ),

RQ(t ) =
Es

2
sin(θ(t )−δ).

These are not the desired projections of the baseband modulation. The phase offset

between the carriers of the transmitter and the receiver has manifested itself as a

constant phase offset in the recovered baseband signal. This shows up in the con-

stellation diagram of the receiver as a constant angular offset of the entire constel-

lation. If there is a frequency offset between the LO and the transmitted carrier, the

situation is worse still. Suppose the LO is:

X (t ) =
√

Es e− j 2π fx t ,

where fx is the LO frequency, which is different from the true carrier frequency.

When we mix the received QPSK signal with the LO, we obtain:

R(t ) =
√

Es cos(2π fc t +θ(t )) ·
√

Es e− j 2π fx t ,

which simplifies to:

RI (t ) =
Es

2
{cos(2π[ fc + fx ]t +θ(t ))+cos(2π[ fc − fx ]t +θ(t ))},

RQ(t ) =
Es

2
{−sin(2π[ fc + fx ]t +θ(t ))− sin(2π[ fx − fc ]t −θ(t ))}.
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After lowpass filtering and further simplification, we end up with:

RI (t ) =
Es

2
cos(2π[ fc − fx ]t +θ(t )),

RQ(t ) =
Es

2
sin(2π[ fc − fx ]t +θ(t )).

The frequency offset between the carriers of the transmitter and the receiver has

manifested itself as a frequency offset in the recovered baseband signal. If we ex-

amine the constellation diagram of a baseband signal that has a constant frequency

offset, the entire constellation will rotate at a rate equal to the frequency offset.

Referring to Fig. , the symbol decision regions for QPSK are simply the four

quadrants. If a phase or frequency offset causes the constellation points to rotate

off of their nominal positions, the receiver may make errors in deciding which sym-

bol was received. Thus, the receiver must correctly estimate the transmitted carrier

phase and frequency.

.. Symbol Timing Recovery

Assuming the receiver has successfully down converted the modulation from pass-

band to baseband, the next task the receiver must perform is symbol timing recov-

ery. Each received symbol must be sampled at the proper time in order to obtain the

best immunity from noise. The receiver must sample the symbol at the point where

the ‘eye’ of the eye diagram (see Fig. ) is open the widest.

When sampling at the correct time, the receiver need only decide whether the

value of the received signal represents a ‘’ or a ‘’. In the case of QPSK, we have both

an in-phase and quadrature component to the received symbol, and will thus re-

cover two bits for each symbol. If we sample the symbol at any point other than

where the eye is at its maximal opening, our decision will be degraded by inter-

symbol interference (ISI). With Nyquist pulse shaping, ISI is only zero at one instant

in each symbol interval.

.. Symbol Demodulation

Once the receiver has identified the correct symbol timing, it must sample each sym-

bol and estimate the most likely value of the transmitted symbol. The receiver may

produce either a hard output, consisting of two bits for each symbol, or a soft out-

put, consisting of a quantized estimate of the value of each symbol. For the symbol

mapping given in Table , the receiver can produce a hard output by assigning the

sign of the in-phase sample to the first bit of each dibit, and the sign of the quadra-

ture sample to the second bit of each dibit. The receiver produces a soft output by

quantizing the amplitudes of the in-phase and quadrature samples of each symbol.

.. Phase Ambiguity

We assume the receiver LO phase is perfectly matched to that of the transmitted

QPSK. However, most phase estimators leave a degree of ambiguity in their estimate.
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Most commonly, the phase estimator produces a result which may be wrong by a

factor of an integer multiple of π

2 radians. When the carrier phase estimate is off

by this factor, the demodulated bits will be wrong, because the receiver is, in effect,

using a different symbol mapping than the transmitter. In general, a fixed frame-

sync pattern is sent by the transmitter to resolve any phase ambiguity at the receiver.

.. Block Diagram

Fig.  shows a block diagram of a typical QPSK receiver. The input QPSK signal is
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Figure : QPSK Receiver

mixed with a quadrature local oscillator, which heterodynes the modulation from

the carrier frequency to baseband. Since QPSK requires a coherent receiver, the car-

rier phase of the LO must be phase synchronized to the received QPSK.

The pulse shaping filter is a lowpass square-root raised-cosine filter that removes

the double-frequency term from the down-converted quadrature baseband signal.

This filter also completes the Nyquist pulse shaping of the signal, resulting in zero

ISI at the optimal sampling time.

The filtered baseband signal feeds a carrier phase estimator that adjusts the local

oscillator phase, forcing it into phase synchronization with the received QPSK signal.

The carrier phase estimator and its associated connection to the LO is typically the

most challenging portion of the receiver design.

The filtered baseband signal also feeds a symbol timing recovery block. This

block determines the optimal symbol timing, and takes a sample of the signal when

the eye of the eye diagram is at its widest opening. This too, is often a challenging

portion of the receiver design.

The last block of the receiver takes an optimally-timed sample of the filtered

baseband signal and forms an estimate of the transmitted symbol. This estimate

is then converted to a dibit and supplied as the output bitstream.
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 DPSK

Thus far, we have only considered the possibility of a coherent demodulator for re-

ceiving PSK. A coherent demodulator requires the receiver local oscillator to have its

carrier phase and frequency precisely matched to the transmitted carrier. However,

if we are willing to sacrifice some bit-error-rate performance in exchange for a re-

duction in receiver complexity, there is an alternative to the coherent demodulator,

and this is the motivation for differential phase shift keying (DPSK).

Instead of creating an independent phase-coherent local oscillator, we can use

the PSK signal itself as the local oscillator. To do this, we delay the received PSK

signal by exactly one symbol, then mix this delayed signal with the incoming PSK.

This technique is called intermediate frequency (IF) differential demodulation. We

previously defined a PSK signal in (). If we delay this PSK signal by one symbol, the

value of t becomes (t −T ), where T is the duration of one symbol. If we mix the

received PSK signal with a one-symbol delayed copy of itself, we obtain:

R(t ) =
√

Es cos(2π fc t +θ(t )) ·
√

Es cos(2π fc (t −T )+θ(t −T ))

=
Es

2
{cos(2π2 fc t −2π fc T +θ(t )+θ(t −T ))+cos(2π fc T +θ(t )−θ(t −T ))}.

After lowpass filtering, we have:

R(t ) = cos(2π fc T +θ(t )−θ(t −T )).

The term, 2π fc T is a constant, and under certain conditions, may disappear

completely. The phase angle of the present symbol is θ(t ), and the phase angle of

the previous symbol is θ(t −T ). Therefore, the term θ(t )−θ(t −T ) is simply the an-

gular difference between the present and previous symbols. Thus, by mixing a PSK

signal with a one-symbol delayed copy of itself, we obtain a signal that tells us the

phase difference between the present symbol and the previous symbol.

Another possibility is to use an asynchronous local oscillator to down convert

the PSK from the carrier frequency to baseband, then differentially decode the base-

band signal. This technique is called baseband differential demodulation. Suppose

our PSK signal, S(t ), is (), and our local oscillator is:

X (t ) =
√

Es e− j (2π fx t+δ),

where fx is the frequency of the LO, and δ is some arbitrary phase. The output of the

down converter will be:

R(t ) =
√

Es cos(2π fc t +θ(t )) ·
√

Es e− j (2π fx t+δ),

which simplifies to:

RI (t ) =
Es

2
{cos(2π[ fc + fx ]t +θ(t )+δ)+cos(2π[ fc − fx ]t +θ(t )−δ)},

RQ(t ) =
Es

2
{−sin(2π[ fc + fx ]t +θ(t )+δ)− sin(2π[ fx − fc ]t −θ(t )+δ)}.
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After lowpass filtering and further simplification, we have:

RI (t ) =
Es

2
cos(2π[ fc − fx ]t +θ(t )−δ),

RQ(t ) =
Es

2
sin(2π[ fc − fx ]t +θ(t )−δ).

Next, we calculate arctan(RQ(t )/RI (t )) to extract 6 R(t ), the argument of the filtered

baseband signal. Finally, we subtract a one-symbol delayed version of 6 R(t ) from

itself to form 6 R(t )− 6 R(t −T ). The result is:

2π[ fc − fx ]t +θ(t )−δ−2π[ fc − fx ](t −T )−θ(t −T )+δ.

If fx ≈ fc , then the term [ fc − fx ] is very small, and can be considered nearly zero over

a one symbol interval. With this approximation, we are left with θ(t )−θ(t −T ), the

phase difference between the present symbol and the previous symbol

Of course, both of these differential receivers are only able to determine the

phase difference between symbols, not the absolute phase of a given symbol. There-

fore, at the transmitter, we must encode our information as a phase difference, rather

than as an absolute phase. To do this, we will assign a phase difference, ∆θ, to

each symbol. Table  lists one possible symbol mapping for differential QPSK. To

dibit ∆θ(t )

 0

 +π

2
 −π

2
 π

Table : Differential QPSK Symbol Map

encode the symbols, the transmitter starts with the initial phase value, θ(t = 0),

which may be set to zero for convenience. Then the transmitter follows the rule:

θ(n) = θ(n −1)+∆θn , where n is the symbol number, and ∆θn is the value from Ta-

ble  corresponding to the nth symbol. The remainder of the transmitter is identical

to an ordinary QPSK transmitter.

With differential PSK, the receiver does not need a phase-coherent local oscilla-

tor. This leads to a vastly simpler receiver design than that required by PSK. How-

ever, differential PSK suffers from degraded bit-error-rate performance, since the

amount of noise in the received signal is effectively doubled, due to mixing a noisy

signal with a noisy signal instead of a clean local oscillator.

Although the example presented above is differential QPSK (DQPSK), M-ary DPSK

is possible for any value of M, with DBPSK and DQPSK being the most common.

DQPSK can be further modified to obtain π/-DQPSK, perhaps the most versatile

member of the DPSK family.
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 π/-DQPSK

π/-DQPSK is a variation of DQPSK, and as such, has four possible symbols. Stan-

dard QPSK maps each of the four symbols to a unique phase angle in an absolute

manner. In other words, the symbol S00 always maps to θ(t ) =+ 3π
4

. π/-DQPSK uses

differential encoding; therefore, the mapping between symbols and phase angles is

no longer absolute. We begin our study of π/-DQPSK by exploring the mapping

between symbols and phase angles.

. Symbol Mapping

Consider the symbol mapping of Table . Although this table looks similar to the

symbol ∆θ

 − 3π
4

 3π
4

 −π

4
 π

4

Table : π/-DQPSK Symbol Map

one for QPSK, the value retrieved from this table is the phase increment, ∆θ, instead

of the phase angle, θ. At the start of each symbol interval, we use ∆θ to compute θ

according to:

θnew = θold +∆θ,

then we use θ to shift the phase of the carrier according to:

S(t )=
√

Es cos(2π fc t +θ(t )).

Since ∆θ ∈ {±π

4 ,± 3π
4 }, each successive symbol will advance the carrier phase by

an odd integer multiple of π

4
. Assuming the initial phase shift at time t = 0 is zero,

the possible phase angles of π/-DQPSK are {0, π4 , π2 , 3π
4 ,π, 5π

4 , 3π
2 , 7π

4 }.

For π/-DQPSK, we create a baseband signal by using the symbol mapping pro-

vided in Table . We first map each dibit to a phase increment, ∆θ. Next, we add each

phase increment to the previous phase, θ, reducing the result modulo 2π as neces-

sary. The result is a sequence of phase angles, which we use to create a complex

baseband signal as:

M(t )= e+ jθ(t ),

where θ(t ) is one of the eight possible phase angles listed above. This completes the

mapping of dibits to the eight constellation points.

. Constellation

π/-DQPSK has an eight point constellation, as shown in Fig. . Although this con-

stellation consists of the same eight points as that of -PSK, π/-DQPSK and -PSK
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Figure : π/-DQPSK Constellation Diagram
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are very different forms of PSK. The π/-DQPSK constellation consists of two four-

point subsets that are offset by π

4 radians from each other. Fig.  shows one of these

subsets in dark gray, and the other in light gray.

Since we are always adding an odd multiple of π

4
radians to the phase, the signal

must alternate between these two four-point subsets every symbol. This means, at

each symbol transition, the signal must move from a dark gray point to a light gray

point, or from light gray point to a dark gray point. Moving from a light gray point to

a light gray point, or from a dark gray point to a dark gray point, is forbidden.

. Transition Diagram

Fig.  shows the transition diagram for π/-DQPSK.
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Figure : π/-DQPSK Transition Diagram

At each of the eight points in the constellation, shown as black circles, there are

four allowable transitions to the other points in the constellation, shown as thick

black lines. Each transition corresponds to one of the four possible symbol values.

None of the transitions pass through the origin. This helps make the signal envelope

more nearly constant than that of QPSK. Additionally, all eight constellation points

are on the unit circle. This means they all have the same total energy.

As was the case with QPSK, we must filter the baseband signal with a raised-

cosine filter to control the bandwidth. This is done in exactly the same manner
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as it was for QPSK, with both the I and Q components of the baseband signal be-

ing filtered with a raised-cosine filter. When the baseband signal is filtered with a

raised-cosine pulse shaping filter, the transitions become those shown in light gray

in Fig. .

. Eye Diagram

When we view either the in-phase or quadrature component of the baseband signal

transitions versus time, the result is the eye diagram shown in Fig. . The eye al-
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Figure : π/-DQPSK Eye Diagram

ternates between two levels and three levels at every symbol. This is quite different

from the eye diagram of QPSK, and is due to the alternating subsets of the constella-

tion. Fig.  helps to visualize the projections of the constellation points onto the real

or imaginary axis. The light gray subset of the constellation will project to the two

points: ±
p

2
2 The dark gray subset of the constellation will project to three points:

, ±1. Therefore, as the signal alternates between these two subsets, the eye will

alternate between two levels and three levels at every symbol, as shown in Fig. .

. Transmitter

Fig.  shows a block diagram of a π/-DQPSK transmitter. The thin lines of Fig. 

show real signals, and the thick lines show complex signals.

The nibbler partitions the continuous input bitstream into dibits, then supplies

these dibits to the symbol mapper. The symbol mapper maps dibits to points in the

π/-DQPSK constellation. It does this by looking up the value of ∆θ (from Table )
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Figure : π/-DQPSK Transmitter

that corresponds to the dibit, then adding this value of ∆θ to the previous value of

θ. We assume the value of θ at time t = 0 is zero, though it can be set to any integer

multiple of π

4
if desired.

Once the symbol mapper has determined the new value of θ, it creates a com-

plex baseband symbol corresponding to this phase angle. Table  lists the real and

imaginary values of the baseband symbol for all possible values of θ.

θ real imaginary

 + 

π

4
+

p
2

2
+

p
2

2
π

2  +

3π
4

−
p

2
2

+
p

2
2

π - 

5π
4

−
p

2
2

−
p

2
2

3π
2

 -

7π
4

+
p

2
2

−
p

2
2

Table : π/-DQPSK Symbol Table

The symbol mapper then passes the real and imaginary values of each symbol

to the pulse shaping filter. As was the case for QPSK, the pulse shaping filter is a

square-root raised-cosine filter that limits the bandwidth of the signal. Finally, a

quadrature carrier oscillator heterodynes the modulation from baseband to the car-

rier frequency.

. Receiver

Although π/-DQPSK may be demodulated several different ways, the baseband dif-

ferential receiver is the easiest to implement in a sampled signal environment. The

baseband differential receiver uses an asynchronous local oscillator to down convert

the π/-DQPSK from the carrier frequency to baseband, then differentially decodes

the baseband signal. In the section on differential PSK, we showed the argument of

the baseband signal to be:

6 R(t )= 2π[ fc − fx ]t +θ(t )−δ,

where fc is the π/-DQPSK carrier frequency, fx is the local oscillator frequency, θ(t )

is the phase modulation, and δ is the arbitrary phase of the local oscillator. If we
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subtract a one-symbol delayed version of this signal from itself, we obtain:

2π[ fc − fx ]t +θ(t )−δ−2π[ fc − fx ](t −T )−θ(t −T )+δ.

If the local oscillator frequency is close to the π/-DQPSK carrier frequency, then the

term [ fc− fx ] is essentially zero over one symbol, and the baseband differential signal

is approximately: θ(t )−θ(t −T ), the phase difference between the present symbol

and the previous symbol

Fig.  shows a block diagram of the baseband differential receiver. The local
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Figure : π/-DQPSK Baseband Differential Receiver

oscillator generates a quadrature carrier that is close to the frequency of the π/-

DQPSK carrier, but having an arbitrary phase offset. The receiver mixes the asyn-

chronous LO with the received π/-DQPSK, to heterodyne the modulation to base-

band. The baseband signal is complex, as indicated by the thick line in Fig. . A

square-root raised-cosine lowpass filter removes mixer products from the complex

baseband signal, and also completes the Nyquist pulse shaping.

The output of the pulse shaping filter is processed by an arctangent function to

recover the argument, or angle, of the signal. Next, the receiver places the argument

of the baseband into a one-symbol delay line, then subtracts the output of the delay

line from the input of the delay line. The resulting signal is the difference between

the phase of the present and previous symbols. This phase difference is fed to the

symbol timing recovery block for final demodulation.

. Symbol Timing Recovery

The symbol timing recovery function must estimate the symbol timing; that is, it

must locate the symbol boundaries. Once the symbol timing has been established,

the receiver must sample the signal, then estimate the most likely transmitted sym-

bol, based on this sample.

The input signal presented to the symbol timing recovery mechanism is ∆θ,

the phase difference between the present sample and the sample one symbol ago.

At the ideal sampling times, ∆θ will converge to one of the four possible values:
π

4
, 3π

4
, 5π

4
, 7π

4
. At all other times, ∆θ diverges from these four values and takes on

many values in the range from zero to 2π. This observation is the key to determin-

ing the symbol timing.
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Since the filtered baseband signal has a Nyquist pulse shape, θ(t ) will have zero

ISI at one point in each symbol. Likewise, ∆θ will also exhibit zero ISI at one point in

each symbol, since it is, by definition, the difference between θ(t ) over exactly one

symbol. At all times other than the ideal sampling time, ∆θ will be corrupted by ISI.

We can use this fact to determine the symbol timing.

In many systems, symbol timing recovery is accomplished by inserting a fixed

synchronization pattern into the modulation, then searching for this pattern at the

receiver. This makes symbol timing recovery easy, at the expense of consuming

bandwidth that could be used to carry information.

In addition to determining the correct symbol timing, the receiver must also es-

timate the transmitted symbol value that the received signal represents. Since ∆θ

should ideally be ±π

4
or ± 3π

4
, the decision regions for the received symbols are sim-

ply the four quadrants of complex signal space, and the decision boundaries are the

real and imaginary axes.

. Bit Error Rate Performance

The theoretical bit error rate performance of π/-DQPSK on a static AWGN channel

is given by:

Pb = e
−2

Eb
N0 {

∞
∑

i=0

(
p

2−1)i Ii (
p

2
Eb

N0
)−

1

2
I0(

p
2

Eb

N0
)}.

This is plotted for
Eb

N0
from  dB to  dB in Fig. . The solid black curve is π/-
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Figure : π/-DQPSK BER on Static AWGN Channel

DQPSK, while the light gray curve is conventional QPSK. As expected, π/-DQPSK
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performs about  to  dB worse than QPSK on an AWGN channel. However, on fad-

ing channels, π/-DQPSK may perform better than QPSK.
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